

Description

The IS31LT3360 is a continuous mode inductive step-down converter, designed for driving a single LED or multiple series connected LEDs efficiently from a voltage source higher than the LED voltage. The device operates from an input supply between 6V and 40V and provides an externally adjustable output current of up to 1.2A. Depending upon supply voltage and external components, this can provide up to 30 watts of output power. The IS31LT3360 includes an integrated output switch and a high-side output current sensing circuit, which uses an external resistor to set the nominal average output current. Output current can be adjusted linearly by applying an external control signal to the ADJ pin. The ADJ pin will accept either a DC voltage or a PWM waveform. This will provide either a continuous or a gated output current. Applying a voltage of 0.2V or lower to the ADJ pin turns the output off and switches the chip into a low current standby state.

Features

- Internal 40V power switch
- Wide input voltage range: 6V to 40V
- Up to 1.2A output current
- High efficiency (up to 98%)
- Typical 1200:1 dimming rate
- Typical 3% output current accuracy
- Single pin on/off and brightness control using DC voltage or PWM
- Inherent open-circuit LED protection
- Thermal shutdown protection circuitry

Quick Start

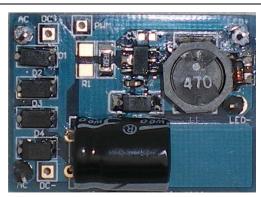


Figure 1: Photo of IS31LT3360 Evaluation Board

Recommended Equipment

- 60VDC Power supply
- LED panel (5W LED, 10 LEDs in series)

Recommended Input and Output Ratings

- Input: 6-40VDC
- Output: 1-10 LEDs in series/1A

Note: The input voltage must be 2V higher than the output voltage(total Vf).

Absolute Maximum Ratings

Input voltage ≤ 40VDC

Caution: Do not exceed the voltage listed above. Doing so may cause damage to the board.

Ordering Information

Part No.	Temperature Range	IC Package	
IS31LT3360-SDLS3-EBSG	-40°C to +105°C (Industrial)	SOT89-5 (4mm x 4.5mm)	

Table 1: Ordering Information

For pricing, delivery, and ordering information, please contact the ISSI team at <u>analog_mkt@issi.com</u> or (408) 969-6600.

Procedure

The IS31LT3360 Evaluation Board is fully assembled and tested. Follow the steps listed below to verify board operation.

Caution: Do not turn on the power supply until all connections are completed.

- Connect the terminals of the power supply to the AC1 and AC2 pin(If the board don't have the rectifier(D1-D4), Connect the positive terminal of the power supply to the DC+ of the board and the negative terminal of power supply to the DC- of the board).
- 2) Connect the negative of the LED panel (LED arrays) to the LED- terminal.
- Connect the positive of the LED panel (LED arrays) to the LED+ terminal.
- 4) Turn on the power supply and the LED panel (LED arrays) will light.

Evaluation Board Operation

LED Current Control

The nominal average output current in the LED(s) is determined by the value of the external current sense resistor (R_s) connected between V_{IN} and I_{SENSE} and in is given by:

$$I_{OUT nom} = 0.1/Rs [for Rs>0.082\Omega]$$

The table below gives values of nominal average output current for several preferred values of current setting resistor (Rs) in the typical application circuit shown on page 1:

R _s (Ω)	Nominal average output current (mA)			
0.082	1200			
0.1	1000			
0.15	667			
0.3	333			

Vsense is divided into two ranges to improve current accuracy, please refer to bin information on page 3. The above values assume that the ADJ pin is floating and at a nominal voltage of V_{REF} =1.2V. Note that R_S =0.082 Ω is the minimum allowed value of sense resistor under these conditions to maintain switch current below the specified maximum value. It is possible to use different values of R_S if the ADJ pin is driven from an external voltage.

Inductor Selection

Recommended inductor values are in the range $47\mu H$ to $220\mu H$. Higher values of inductance are recommended at higher supply voltages and low output current in order to minimize errors due to switching delays, which result in increased ripple and lower efficiency. Higher values of inductance also result in a smaller change in output current over the supply voltage range. The inductor should be mounted as close to LX pin as possible with low resistance connections to LX and V_{IN} pins.

PCB layout consideration

Decoupling capacitors and coil

It is particularly important to mount the coil and the input decoupling capacitor close to the chip to minimize parasitic resistance and inductance, which will degrade efficiency. The input decoupling capacitor (0.1uF fixed) must be placed as close to the Vin and GND pins as possible. It is also important to take account of

any trace resistance in series with current sense resistor R_s.

LX pin

The LX pin of the chip is a fast switching node, so PCB traces should be kept as short as possible. To minimize ground 'bounce', the ground pin of the chip should be soldered directly to the ground plane.

ADJ pin

The ADJ pin is a high impedance input, so when left floating, PCB traces to this pin should be as short as possible to reduce noise pickup. ADJ pin can also be connected to a voltage between 1.2V~5V. In this case, the internal circuit will clamp the output current at the value which is set by ADJ=1.2V.

High voltage traces

Avoid running any high voltage traces close to the ADJ pin, to reduce the risk of leakage due to board contamination. Any such leakage may raise the ADJ pin voltage and cause excessive output current. A ground ring placed around the ADJ pin will minimize changes in output current under these conditions.

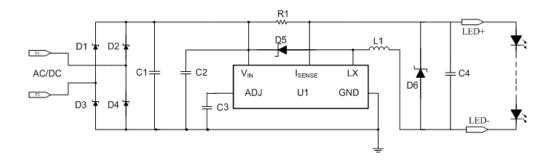


Figure 2: IS31LT3360 Application Schematic. Please refer to the IS31LT3360 datasheet for additional information.

Bill of Materials

Name	Symbol	Description	Qty	Supplier	Part No.
AL Capacitor	C1	220uF,50V	1		
SMD Capacitor	C2	100nF,50V	1		
SMD Capacitor	C3	10nF,50V	1		
SMD Capacitor	C4	1uF,50V	1		
SMD Resistor	R1	0.5Ω±1%,0805	2		
Schottky Diode	D1-D5	SS26,2A,60V	5		
Zener Diode	D6	39V,0.25W	1		
SMD Inductor	L1	47uH,Isat≥1.5A	1		
IC	U1	LED Driver	1	ISSI	IS31LT3360-SDLS3

Table 2: Bill of Materials. Refer to Figure 2 for more information.

Note: 1. C3 is an optional component. C3 can filter the noise coupling to the ADJ pin.

^{2.} D6 is an optional component. It can protect the IC as removing the loading with the power on.

NOTE: Physical dimensions are (L x W x H): 36mm x 26mm x 12mm

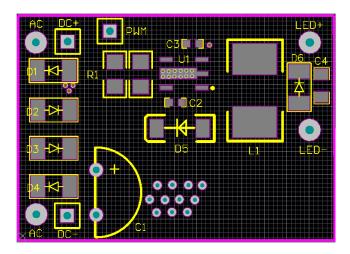


Figure 3: Board Component Placement Guide -Top Layer

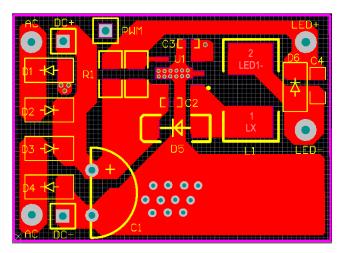


Figure 4: Board PCB Layout- Top Layer

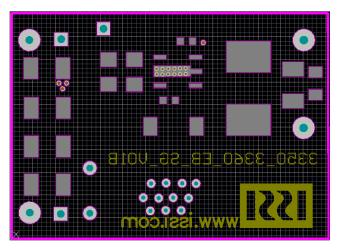


Figure 5: Board Component Placement Guide -Bottom Layer

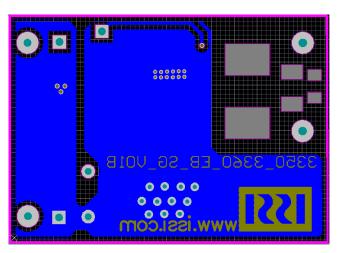


Figure 6: Board PCB Layout-Bottom Layer

Copyright © 2011 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated

- Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances.